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Abstract  
 
Background 
Combatting the tuberculosis (TB) epidemic caused by Mycobacterium tuberculosis (Mtb) 
necessitates a better understanding of the factors contributing to patient clinical outcomes and 
transmission. While host and environmental factors have been evaluated, the impact of Mtb 
genetic background and phenotypic diversity is underexplored. Previous work has made 
associations between Mtb genetic lineages and some clinical and epidemiological features, but 
the bacterial traits underlying these connections are largely unknown.   
 
Methods    
We developed a high-throughput functional genomics platform for defining genotype-phenotype 
relationships across a panel of Mtb clinical isolates.  These phenotypic fitness profiles function 
as intermediate traits which can be linked to Mtb genetic variants and associated with clinical 
and epidemiological outcomes. We applied this approach to a collection of 158 Mtb strains from 
a study of Mtb transmission in Ho Chi Minh City, Vietnam. Mtb strains were genetically tagged 
in multiplicate, which allowed us to pool the strains and assess in vitro competitive fitness using 
deep sequencing across a set of 14 host-relevant antibiotic and metabolic conditions.  
Phylogenetic and monogenic associations with these intermediate traits were identified and then 
associated with clinical outcomes. 
 
Findings  
Mtb clinical strains have a broad range of growth and drug response dynamics that can be 
clustered by their phylogenetic relationships. We identified novel monogenic associations with 
Mtb fitness in various metabolic and antibiotic conditions.  Among these, we find that mutations 
in Rv1339, a phosphodiesterase, which were identified through their association with slow 
growth in glycerol, are further associated with treatment failure.  We also identify a previously 
uncharacterized subclade of Lineage 1 strains (L1.1.1.1) that is phenotypically distinguished by 
slow growth under most antibiotic and metabolic stress conditions in vitro. This clade is 
associated with cavitary disease, treatment failure, and demonstrates increased transmission 
potential. 
 
Interpretation 
High-throughput phenogenotyping of Mtb clinical strains enabled bacterial intermediate trait 
identification that can provide a mechanistic link between Mtb genetic variation and patient 
clinical outcomes. Mtb strains associated with cavitary disease, treatment failure, and 
transmission potential display intermediate phenotypes distinguished by slow growth under 
various antibiotic and metabolic conditions. These data suggest that Mtb growth regulation is an 
adaptive advantage for host bacterial success in human populations, in at least some 
circumstances. These data further suggest markers for the underlying bacterial processes that 
govern these clinical outcomes.  
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Research in context 
 
Evidence before this study  
We used different combinations of the words mycobacterium tuberculosis, tuberculosis, clinical 
strains, intermediate phenotypes, genetic barcoding, phenogenomics, cavitary disease, treatment 
failure, and transmission to search the PubMed database for all studies published up until 
January 20th, 2022. We only considered English language publications, which biases our search. 
Previous work linking Mtb determinants to clinical or epidemiological data has made 
associations between bacterial lineage, or less frequently, genetic polymorphisms to in vitro or in 
vivo models of pathogenesis, transmission, and clinical outcomes such as cavitary disease, 
treatment failure, delayed culture conversion, and severity.  Many of these studies focus on the 
global pandemic Lineage 2 and Lineage 4 Mtb strains due in part to a deletion in a polyketide 
synthase implicated in host-pathogen interactions. There are a number of Mtb GWAS studies that 
have led to novel genetic determinants of in vitro drug resistance and tolerance. Previous Mtb 
GWAS analyses with clinical outcomes did not experimentally test any predicted phenotypes of 
the clinical strains. Published laboratory-based studies of Mtb clinical strains involve relatively 
small numbers of strains, do not identify the genetic basis of relevant phenotypes, or link 
findings to the corresponding clinical outcomes.  There are two recent studies of other pathogens 
that describe phenogenomic analyses.  One study of 331 M. abscessus clinical strains performed 
one-by-one phenotyping to identify bacterial features associated with clearance of infection and 
another details a competition experiment utilizing three barcoded Plasmodium falciparum 
clinical isolates to assay antimalarial fitness and resistance. 
 
Added value of this study 
We developed a functional genomics platform to perform high-throughput phenotyping of Mtb 
clinical strains. We then used these phenotypes as intermediate traits to identify novel bacterial 
genetic features associated with clinical outcomes.  We leveraged this platform with a sample of 
158 Mtb clinical strains from a cross sectional study of Mtb transmission in Ho Chi Minh City, 
Vietnam. To enable high-throughput phenotyping of large numbers of Mtb clinical isolates, we 
applied a DNA barcoding approach that has not been previously utilized for the high-throughput 
analysis of Mtb clinical strains.  This approach allowed us to perform pooled competitive fitness 
assays, tracking strain fitness using deep sequencing.  We measured the replicative fitness of the 
clinical strains in multiplicate under 14 metabolic and antibiotic stress condition. To our 
knowledge, this is the largest phenotypic screen of Mtb clinical isolates to date. We performed 
bacterial GWAS to delineate the Mtb genetic variants associated with each fitness phenotype, 
identifying monogenic associations with several conditions.  We then defined Mtb phenotypic 
and genetic features associated with clinical outcomes.  We find that a subclade of Mtb strains, 
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defined by variants largely involved in fatty acid metabolic pathways, share a universal slow 
growth phenotype that is associated with cavitary disease, treatment failure and increased 
transmission potential in Vietnam. We also find that mutations in Rv1339, a poorly characterized 
phosphodiesterase, also associate with slow growth in vitro and with treatment failure in patients.  
 
Implications of all the available evidence 
Phenogenomic profiling demonstrates that Mtb strains exhibit distinct growth characteristics 
under metabolic and antibiotic stress conditions. These fitness profiles can serve as intermediate 
traits for GWAS and association with clinical outcomes. Intermediate phenotyping allows us to 
examine potential processes by which bacterial strain differences contribute to clinical outcomes. 
Our study identifies clinical strains with slow growth phenotypes under in vitro models of 
antibiotic and host-like metabolic conditions that are associated with adverse clinical outcomes. 
It is possible that the bacterial intermediate phenotypes we identified are directly related to the 
mechanisms of these outcomes, or they may serve as markers for the causal yet unidentified 
bacterial determinants. Via the intermediate phenotyping, we also discovered a surprising 
diversity in Mtb responses to the new anti-mycobacterial drugs that target central metabolic 
processes, which will be important in considering roll-out of these new agents. Our study and 
others that have identified Mtb determinants of TB clinical and epidemiological phenotypes 
should inform efforts to improve diagnostics and drug regimen design.  
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Introduction 
 
Mycobacterium tuberculosis (Mtb) is responsible for over 10 million cases of tuberculosis (TB) 
disease and 1·5 million deaths per year.1 Mitigating the global burden of disease is challenging 
because the determinants of TB treatment success, disease outcomes, and transmission dynamics 
involve a combination of host, environmental, and pathogen factors.2–4 In particular, we have a 
relatively superficial understanding of the bacterial determinants of clinically relevant outcomes 
beyond high-level drug resistance, although these discoveries are actionable where the genetic 
basis of the relevant phenotypes is defined.5,6  
 
Recent studies have sought to use the wealth of Mtb whole genome sequencing data to find novel 
genetic associations with drug resistance, several of which have been experimentally shown to 
cause altered drug responses.7–10 A few studies have sought to find bacterial genetic associations 
with more complex clinical outcomes like treatment failure, transmission, and dissemination.10–16 
Interpretation of genetic associations is complicated by Mtb’s high degree of genetic linkage.17 In 
addition, the biologic basis of most clinical phenotypes and the functions of most Mtb genes in 
vivo are unclear, and combinations of genomic changes may also work in concert to produce the 
overall clinical phenotype of interest.  Therefore, the biologic plausibility of any given 
association is often uncertain.  
 
The best studied putative determinant of Mtb infection outcome is a deletion in a gene encoding 
a polyketide synthase (pks15/1), which synthesizes phenolic glycolipid (PGL), an 
immunologically active cell wall lipid.18  This deletion was originally identified in Mtb Lineage 
4 (L4) strains via a targeted comparison with strains from the epidemiologically expanding clade 
of Lineage 2 (L2.2), and the intact gene is proposed to account for the population level fitness 
success of the L2.2 subfamily.19,20 Subsequent work demonstrated that this was an overly 
simplistic model as PGL production can be found across a number of Mtb lineages and indeed is 
the ancestral rather than the evolutionarily derived state.21,22   
 
The gap between genetics and complex patient phenotypes is not a problem unique to TB. The 
mechanistic study of many human diseases faces the same challenge. As a potential solution, 
human geneticists turned to intermediate trait analysis to dissect the genetic determinants of 
disease and their mechanistic contributions.23 Intermediate phenotypes are heritable biological 
traits shaped by the same genetic drivers as the more complicated disease processes under 
investigation. The intermediate phenotypes may be related to the clinical phenotype of interest in 
non-intuitive ways.  However, they can still provide a genetic handle for, and mechanistic 
insights into, otherwise intractable complex clinical states. For example, identifying cognitive 
variables and deficits as intermediate phenotypes of mechanistically impenetrable disorders such 
as schizophrenia and depression has aided in the identification and interpretation of genes 
associated with these diseases.23   
 
In this study, we developed a high-throughput phenogenomic platform for the discovery of Mtb-
intrinsic intermediate traits related to two clinical phenotypes: treatment failure and development 
of lung cavitary disease. Cavitary disease is an indicator of TB disease severity and is associated 
with treatment failure, while both outcomes are linked to transmission.24,25 By bridging the gap 
between Mtb genetic diversity and patient outcomes via bacterial intermediate phenotypes, we 
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show that Mtb clinical strains demonstrate a wide range of phenogenomic variation in response 
to metabolic and drug stressors, and identify novel bacterial genetic and phenotypic correlates 
with cavitary disease, treatment failure, and potentially transmission.  
 
Methods 
 
Mtb clinical strains 
 
We sought to analyze a representative subset of 1,635 Mtb strains collected through population-
based study of Mtb transmission dynamics in Ho Chi Minh City, Vietnam (S1 Table).11 Mtb 
strains were isolated from the sputum of HIV negative, smear positive adults seeking care at the 
district TB units from 2008-2011.11 We began with a set of 200 strains selected to be 
representative of the lineage distribution of the cohort. We successfully barcoded 158 strains; 
attrition occurred due to various factors including failed strain recovery after transport from 
Vietnam, inability to confirm phenotypic drug sensitivity, and dropout in the barcoding process 
(unsuccessful transformations, contamination, and overlapping barcodes).   
 
Patient clinical metadata and ethics 
 
The strains are paired to corresponding high-level patient data including age, sex, lung cavitation 
identified via chest radiography, and treatment outcome.12 Treatment failure was defined as 
persistent smear positivity after 5 months of appropriate treatment.13   
 
The study was approved by the institutional research board of Pham Ngoc Thach Hospital, Ho 
Chi Minh City, Vietnam and the Oxford University Tropical Research Ethics Committee 
(OxTREC 030–07). Written informed consent was obtained from all patients for enrolment into 
the study. 
 
Drug sensitivity testing  
 
The clinical strains in our study were previously determined to be phenotypically drug sensitive 
to ethambutol (EMB), isoniazid (INH), rifampicin (RIF), and streptomycin (SM) with the 
BACTEC MGIT 960 SIRE system (BD, Franklin Lakes, NJ, USA).13 Prior to barcoding, we 
verified the susceptibility to RIF via a pooled liquid and solid media growth inhibition assay 
(Extended Methods).  
 
Barcoded Mtb clinical strain library  
 
Each clinical isolate in our study plus a Mtb reference strain (Erdman) was transformed with an 
integrating plasmid library carrying randomized 18bp DNA sequence tag that inserts at the L5 
phage integration site of the Mtb genome.26 Our goal was to create three independent barcoded 
clones for each strain to serve as biological replicates. Due to technical dropout or exclusion 
because of barcode sequence similarity, 66 strains in the library are represented by three clones, 
64 strains by two clones and 29 strains by a single clone. In total, the library contains 355 unique 
barcodes. The barcoded strains were pooled together in roughly equal abundances according to 
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OD600 to form the input library, which we aliquoted into 1 mL stocks. We sequenced the input 
library to determine representation of each barcode (fig. S1) (Extended Methods).  
In vitro competition experiments and data analysis  
 
We inoculated the input library into liquid standard media (7H9), defined single carbon source 
media, and standard media treated with each antibiotic at the indicated concentrations and 20 
μg/mL of kanamycin to maintain selection for the barcode (Extended Methods). Each condition 
was prepared in triplicate for technical replicates. We measured the OD600 of the cultures at day 
3 (D3) and day 6 (D6) after inoculation to track bulk library growth (fig. S2). At D3 and D6 we 
also extracted gDNA from the cultures and the stock input library for deep sequencing to 
quantify strain barcode abundance. To compare barcode abundance in the technical replicates, 
we calculated the barcode normalized read counts as following, which controls for differences in 
sample read depth and barcode abundance in the input library (S2 Table): 
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To compare barcode abundance among the biological replicates, identical Mtb clinical strains 
with unique barcodes, we averaged the normalized read counts across the technical replicates for 
each barcode for each condition (S2 Table). To obtain the relative fitness (RF) values for each 
strain that serve as our intermediate phenotypes, normalized barcode read counts were averaged 
across the technical and biological replicates and the log2 fold change was determined. We 
calculated the RF coefficient of variation for use in subsequent analysis where the behavior of 
individual strains is important (S2 Table) (Extended Method). Competition experiments were 
repeated for the acetate + propionate, glycerol, lactate, BDQ, CFZ, and SM conditions to further 
assess the reproducibility of the assay (fig. S3, S3 Table).  
 
Genomic, phylogenetic, and mutation analyses  
 
We performed whole-genome sequencing (WGS) of the 158 barcoded strains used in our study 
(200 Mbp Illumina DNA sequencing, SeqCenter, Pittsburgh, PA, USA) to ensure the strains we 
phenotyped were paired to the correct sequences as compared to those determined by Holt et al. 
and to confirm that the strains did not acquire mutations known to confer drug resistance. One 
uniquely barcoded isolate was sequenced per strain. Refer to the extended methods for the 
procedure for alignment, variant calling, and mutation annotation. S1 Table includes the strain 
accession numbers from this study (accession number PRJNA950969) and those provided by 
Holt et al. (accession number PRJNA355614).11 We found discordance between our WGS and 
the original sequences for 18 strains (S1 Table) and used the corrected sequences for our 
analyses. We analyzed the variant calling files for each clinical isolate to confirm that the strains 
in our sample did not contain polymorphisms at the loci associated with EMB, INH, RIF, SM, 
and quinolone resistance as previously assessed by Holt et al.11  
 
To identify Mtb mutations associated with the relative fitness phenotypes, we used the Python 
(version 3.8.5) package Pyseer (version 1.3.10) to perform a bacterial GWAS.27 We used the 
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linear mixed model option and included only nonsynonymous single nucleotide polymorphisms 
(SNPs) and mutations within intergenic regions for the analysis. Loci were grouped by genes. 
We controlled for population structure with SNP-based similarity and distance matrices and by 
inputting the lineage assignment for each strain (Extended Methods).  
 
Growth Curves 
 
Selected clinical isolates were cultured in 7H9 media and 20 μg/mL kanamycin to an OD600 of 
~0·5, then each strain was diluted in triplicate to an OD600 of 0·005 into either 10 mL of fresh 
7H9 media or acetate + propionate defined medium with 20 μg/mL kanamycin. Cultures were 
incubated at 37° C with constant shaking and OD600 was measured on days 3, 5, and 7.  
 
Minimal inhibitory drug concentration 
 
We determined the minimum inhibitory concentration (MIC) for the selected clinical isolates 
using the indicated concentrations of antibiotics via an alamar blue reduction assay completed as 
described but without shaking.8 After 3 days of incubation with the alamar blue reagent (BioRad, 
Hercules, CA, USA), the MIC was identified as the lowest concentration of drug that inhibited 
the reagent color change as determined visually.   
 
Terminal branch length analysis 
 
Terminal branch lengths for the L1 strains were calculated as the number of SNPs derived from 
the most recent branching point of each strain.  A consensus alignment of all variable sites for 
the L1 WGS within the complete Mtb strain set from the population study was generated to 
compute pairwise SNP distances of all L1 strain pairs.11 Then strain pairs with the smallest SNP 
distances were identified from the SNP distance matrix of all L1 strains. The terminal branch 
length of one Mtb strain is calculated by the SNP distance from its closest neighbor subtracted by 
the number of SNPs that were accumulated by its closest neighbor. 
 
Statistical analyses 
  
Prism 9 (version 9.5.0) for Mac OS was used for statistical analyses unless indicated otherwise.  
 
Results  
 
Methodology for high-throughput intermediate phenotyping of Mtb clinical isolates 
 
We sought to develop a platform to identify bacterial intermediate traits associated with infection 
and treatment outcomes.  As in human genetic studies, we anticipated using these traits to 
nominate several novel bacterial determinants of clinically relevant outcomes.  Drug resistance is 
a known bacterial determinant of treatment failure, cavitary disease, and other clinical 
phenotypes; but there is little known about bacterial factors associated with TB disease in drug-
sensitive strains.24,28,29 Therefore, here we aimed to identify novel traits associated with clinical 
outcomes by performing high dimensional phenotyping of drug susceptible Mtb strains as 
confirmed by phenotypic and genotypic DSTs.  
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Our sample set is comprised of Mtb strains isolated from 158 TB patients enrolled in a 
population-based study of Mtb transmission in Ho Chi Minh City, Vietnam (Fig. 1A).11 TB 
cavitary disease and treatment failure occurred in 27·8% and 8·9% of the patients whose strains 
are represented in this sample (Table 1). Lineage-level assignment was significantly associated 
with treatment outcome; 19% of patients in our sample infected by a L1 strain failed treatment, 
compared to 5·6% of L2 strains and none of the L4 strains (Chi-square statistic=7·7, P=0·022) 
(Fig. 1A) (Table 2). Despite the relationship between cavitary disease and treatment failure 
described in the literature, we observed no significant association between these clinical 
outcomes in our dataset (Chi-square statistic=3·05, P=0·38).24  
 
We next sought to better resolve bacterial determinants of clinical outcomes though bacterial 
intermediate trait identification. To accomplish this, we developed a platform for the high-
throughput phenotypic profiling of Mtb strains. For this approach we tagged Mtb clinical isolates 
with unique genetic barcodes, enabling us to pool strains and track individual strain abundance 
using deep sequencing in large-scale high-throughput in vitro competition experiments across 
different host- and clinically relevant stress conditions (Fig. 1B).26  From these data, we defined 
host-relevant metabolic and antibiotic stress fitness phenotypes for each clinical isolate, which is 
indicative of the relative change of strain relative abundance throughout the time course of the 
competition experiments.  
 
During infection, Mtb sources of carbon is limited by the availability within the host 
environment.30 We therefore utilized defined single carbon source media (acetate, propionate, 
acetate + propionate, dextrose, glycerol, dextrose + glycerol, and lactate) in order to mimic host-
relevant metabolic stress.31 Our phenotyping screen also included first-line antibiotics (isoniazid 
(INH), rifampin (RIF), ethambutol (EMB) and streptomycin (SM)) to which these drug-sensitive 
isolates may have been exposed but not acquired high level resistance, and second-line 
antibiotics (bedaquiline (BDQ), clofazimine (CFZ), and pretomanid (PMD)) to which these 
strains were not expected to have been exposed but which were utilized to probe essential 
bacterial processes.32 We screened the library at antibiotic concentrations at roughly the MIC50, 
the concentration that inhibits growth of 50% of tested clinical isolates on average, to create 
growth restriction without complete killing.33–36   
 
We assessed the technical and biological reproducibility of our phenotyping method. We 
performed principal component analysis (PCA) of the technical replicates under each condition 
using the normalized barcode read counts at day 6 (D6), which were normalized to control for 
differences in read depth and strain abundance in the input library (fig. S1).  The clustering of the 
technical replicates from each condition demonstrates the technical reproducibility of the 
measurements (Fig. 1C, S2 Table). Biological replicates were achieved by independently 
constructing up to three barcoded clones per clinical isolate. The median Pearson correlation 
coefficient of normalized barcode read counts across all conditions is 0·91 when comparing 
biological replicates of the same strain but is -0·04 for comparisons between different strains 
(Mann-Whitney P<0·0001, Fig. 1D, S2 Table).  Thus, biological replicates are concordant while 
the lack of correlation between unique strains demonstrates that the clinical isolates in our library 
are phenotypically diverse. For the biological replicates, any barcode that resulted in a Pearson 
correlation coefficient of 0·62 or less was considered an outlier via the ROUT test, excluding 32 
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of 355 barcodes from further analysis (Fig. 1D, S2 Table).37 Given the quality of the technical 
and biological replicates, for each strain we averaged the normalized barcode read counts across 
replicates and calculated the log2 of these values to obtain the corresponding relative fitness (RF) 
for each condition (S2 Table), which then established the metabolic and antibiotic Mtb clinical 
strain intermediate phenotypes used for downstream association studies. The Spearman 
correlation coefficients of the RF values from fully independent repeats of the competition 
experiments ranged from 0·72 to 0·97 (fig. S3, S2 Table, S3 Table). 
 
We observed a large range of fitness phenotypes across the metabolic and antibiotic stress 
conditions, the distributions of which were significantly different by D6 (Kruskal-Wallis 
P<0·0001) (Fig. 1E).  Hierarchical clustering of the conditions based on strain D6 RF values 
found similar carbon source conditions (such as acetate and acetate + propionate) and drugs with 
related mechanisms of action (EMB and INH or BDQ and CFZ) group together (Fig. 1F).  The 
carbon source conditions formed a distinct cluster from the antibiotic conditions (Fig. 1F). 
Interestingly, PMD forms an outgroup from other drug conditions while BDQ and CFZ form an 
outgroup from all conditions, indicating the Mtb clinical strains have distinct phenotypes in the 
face of these drugs which target different aspects of energy metabolism (Fig. 1F).   
 
We confirmed that our RF values track with more traditional drug sensitivity phenotypes by 
performing MIC assays with BDQ, CFZ, PMD, and SM. Strains with the highest RF values 
demonstrate MICs as much as 15 times greater than that of strains with the lowest RF values, 
although all were still under the critical concentration defining high level drug resistance (fig. S4, 
S4 Table).38  We also performed single-strain growth curves in acetate + propionate defined 
media and found that strains with the largest RF values have a faster growth rate compared to 
strains with the lowest RF values (fig. S5, S4 Table).  
 
Phylogenetic structure of metabolic and antibiotic intermediate phenotypes 
 
Given the association between L1 Mtb clinical strains and treatment failure in our sample (Table 
2), we compared differences in the intermediate phenotypes based on lineage. L1 strains exhibit 
significantly lower RF values compared to strains belonging to L2 and L4 across nearly every 
stress condition (Fig. 2). This phenotype is especially striking in acetate, acetate + propionate, 
dextrose + glycerol, BDQ, and CFZ (Fig. 2). A notable exception is PMD, where L1 strains 
demonstrate higher RF values compared to L2 and L4 strains (Fig. 2).  
 
To assess the genetic basis of the RF phenotypes, we organized the RF values according to the 
phylogenetic relationship of the clinical isolates (Fig. 3A). Within-lineage phenotypic 
heterogeneity is evident but lineage and sub-lineage patterning of the stress response phenotypes 
is qualitatively recognizable. For each condition we determined the phylogenetic signal, which 
quantifies the propensity of closely related strains to share similar intermediate traits compared 
to more genetically distant isolates.39 We found that the RF of strains under every condition 
except lactate, EMB, and PMD is associated with a phylogenetic signal of 0·5 or higher 
(P<0·0001) which indicates that most phenotypes have high phylogenetic heritability (fig. S6).  
 
Mtb genetic determinants underlying intermediate phenotypes  
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 10, 2023. ; https://doi.org/10.1101/2023.04.09.536166doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.09.536166


We sought to explicitly define genetic determinants of the intermediate phenotypes using a 
GWAS. We performed GWAS using a linear mixed model approach that allowed us to utilize 
the intermediate traits as continuous variables.27 Although the linear mixed model approach 
controls to some extent the clonal population structure of Mtb, we discovered that the significant 
associations with RF under both carbon and antibiotic stress conditions were dominated by 
mutations shared by the L1.1.1.1 subclade of L1 strains (Fig. 3A, Fig. 3B, S5 Table).40 Indeed, 
the 32 Mtb clinical strains belonging to L1.1.1.1 drives the dramatic phenotypic differences 
between L1 with L2 and L4 (Fig. 2, fig. S7).  
 
In our sample, the L1.1.1.1 clade shares 103 private mutations relative to all of the other strains 
(S6 Table). These variants include INDELs, nonsynonymous mutations, synonymous mutations, 
and intergenic mutations. With the L1.1.1.1 private mutations, we created a protein association 
network using the STRING database (Fig. 3C).41 For the largest interaction network, we 
performed a KEGG functional enrichment analysis (Fig. 3C, S6 Table, S7 Table), which 
indicated that mutations private to L1.1.1.1 are involved in fatty acid degradation (False 
Discovery Rate=0·00015), fatty acid metabolism (FDR=0·011), and propionate metabolism 
(FDR=0·046), amongst other pathways. These pathways track with the association with 
decreased fitness in the acetate + propionate condition (P=0·00036) (Fig. 3B, Fig. 3D).42  
 
We also completed a SIFT analysis to assess which nonsynonymous mutations shared by 
L1.1.1.1 potentially affect protein function, as most likely candidates driving phenotype variation 
of the L1 subclade (Fig. 3C, S6 Table).43 Twenty of the 38 nonsynonymous mutations in proteins 
with matches within the SIFT database produce a premature stop codon or are a predicted 
intolerant mutation (Fig. 3C, S6 Table). This includes a premature stop codon in mmpL5, a gene 
encoding an efflux pump associated with BDQ resistance, which explains the GWAS link 
between L1.1.1.1 and BDQ susceptibility (P=1·26x10-6) (Fig. 3B-D).44 The L1.1.1.1 clade is also 
more susceptible to CFZ (Fig. 3A, fig. S7), resistance to which is also mediated by mmpL5.44 
The GWAS did not return a statistically significant hit for PMD fitness, but L1.1.1.1 strains 
share a nonsynonymous mutation in fgd1, mutations in which are linked to PMD resistance.45  
 
While the constellation of L1.1.1.1 mutations were the dominant feature of the intermediate 
phenotype GWAS, we did identify monogenetic associations with certain conditions, such as 
mutations in nuoD, which encodes a Mtb NADH dehydrogenase, linked to lower RF in acetate + 
propionate (P=4·59x10-6) (Fig. 3D); Rv1339, an enzyme involved in Mtb second messenger 
signaling, is associated with lower RF in glycerol (P=5·95x10-6) (Fig. 3B, Fig. 3D)46; and 
mutations in Rv1707, a putative sulfur transporter implicated in antibiotic persistence, is 
associated with increased RF in RIF (P=4·6x10-6) (Fig. 3B, Fig. 3D).47,48 The latter was the only 
variant we discovered that was associated with increased fitness, suggesting that slow growth 
may provide Mtb with an adaptive advantage against stress.  
 
Mtb L1 clade is associated with poor clinical outcomes and increased transmission potential 
 
We next sought to determine if the L1.1.1.1 phenogenomic determinants were associated with 
clinically relevant phenotypes. Interestingly, despite no previous association with the wider L1 
lineage, we found that 44% of patients infected with strains from the L1.1.1.1 clade experienced 
cavitary disease, as opposed to 24% of patients infected by other strains in our sample (odds ratio 
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= 2·49, confidence interval = 1·11-5·59, P=0·027) (Fig. 4A). In addition, 22% of patients infected 
with L1.1.1.1 strains failed treatment, compared to 6% of patients infected by other strains (odds 
ratio = 4·76, confidence interval = 1·53-14·78, P=0·0069) (Fig. 4A).  
 
Rv1339, which has been implicated in modulating Mtb antibiotic susceptibility and is undergoing 
positive selection in TB patients globally was the only monogenic determinant associated with 
treatment failure (OR=5·34, CI=1·21-23·58, P=0·027), but not cavitary disease, suggesting 
disparate mechanisms may be accounting for these two distinct clinical outcomes associated with 
the L1.1.1.1 strains.10,46,49 We performed Mantel-Haenszel analyses to ensure that the 
associations we identified with L1.1.1.1 and Rv1339 mutations are not explained by patient age 
or sex (S8 Table). 
 
The finding that L1.1.1.1 strains have markedly lower RF under several in vitro conditions but 
were associated with worsened clinical outcomes might seem counter-intuitive. However, we 
have previously found that higher epidemiologic fitness of L2.2 strains correlates with slower 
growth in mice.50 Therefore, we sought to assess the epidemiologic fitness of the L1 subclade 
strains. Terminal branch lengths (TBLs), determined by the number of SNPs derived from the 
most recent branching point of each strain, serves as a proxy for the maximum evolutionary time 
after transmission.11 Using the entire panel of 1,635 clinical isolates in the transmission cohort, 
we compared L1.1.1.1 to three other closely related L1 clades.11 The TBLs of L1.1.1.1 strains are 
significantly smaller, which may be indicative of more recent transmission (Fig. 4B, fig. S8, S9 
Table). In concert with the association we found between L1.1.1.1 strains and the clinical 
outcomes, this finding is consistent with the established relationship between cavitary disease, 
treatment failure, and transmission.24,25  
 
To assess the global relevance of our findings, we compared the L1.1.1.1 strains in our sample to 
a set of 952 clinical isolates that represent the global diversity of the L1.1.1.1 clade and the 
closely-related L1.1.1 subgroup (S10 Table).10,40 Importantly, the L1.1.1.1 strains utilized in our 
analysis do not form a distinct monophyletic group within the L1.1.1.1 clade but are instead 
interspersed throughout (Fig. 4C). This suggests that the L1.1.1.1 intermediate phenotypes we 
describe may be widely representative of the entire clade. Consistent with previous observations, 
we find that 79·1% of L1.1.1.1 strains originated in Vietnam, while 69·4% of the L1.1.1 strains 
were isolated in Thailand.11,51,52 Therefore, these related clades demonstrate remarkable 
restriction within two distinct but proximal geographic regions. Accordingly, we show that 
L1.1.1.1 strains are phenotypically distinct from the remainder of L1 strains (fig. S7). Together, 
this data suggests that our characterization of the L1.1.1.1 intermediate traits are highly pertinent 
to the biogeographic context of Vietnam in particular and suggest the Mtb is following 
population-specific evolutionary trajectories.  
 
Discussion 
 
Our work leverages a barcoded Mtb clinical collection to conduct high-throughput phenotypic 
screening across host and clinical stress conditions to identify lineage-level fitness differences 
across Mtb clades.  The pipeline we created to barcode Mtb clinical strains to enable high-
throughput competition experiments for phenotyping is conceptually similar to efforts to 
delineate determinates of Plasmodium falciparum antimalarial resistance and M. abscessus 
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infection clearance.53,54 However, in contrast to other studies with typical GWAS that try to 
identify single genetic determinates, we find that clade-level mutations with pleiotropic 
phenotypic effects may have a better predictive value for complex clinical phenotypes.  
 
The most striking phenotype that we identified is slow growth under multiple conditions, which 
associated with a particular L1 subclade (L1.1.1.1) that was predictive of several clinically 
relevant outcomes— development of cavitary disease, likelihood of treatment failure, and 
possibly enhanced Mtb transmission. In addition to the L1.1.1.1 mutations, we also identified an 
association between Rv1339 mutations across L1, decreased fitness in glycerol, and treatment 
failure. Consistent with our observation, Rv1339 encodes a second messenger signaling enzyme 
that modulates drug susceptibility and is undergoing positive selections in clinical isolates.10,46,49 
By identifying bacterial-intrinsic intermediate traits that link these mutations to the clinical 
phenotypes, we establish the plausibility that bacterial phenogenomic variation contributes to 
patient outcomes along with other factors with established associations with cavitary disease and 
treatment failure such as antibiotic adherence, comorbidities, drug resistance, and disease 
severity.24,55,56  
 
The relationship between decreased fitness in acetate + propionate, glycerol, and BDQ with the 
clinical and epidemiological outcomes is not immediately intuitive, as one might assume that 
increased fitness to stress would be a better predictor. However, Mtb is a slow-growing 
organism, which is hypothesized to be an adaption important for drug persistence and 
tolerance.57 Further, Mtb exhibits growth arrest in environmental conditions that simulate the 
immune-activated macrophage or granuloma, such as the combination of acidic pH and host-
relevant carbon sources or low oxygen.58,59 Therefore, decreased fitness in the stress conditions 
we observed could be an intermediate bacterial trait directly related to growth arrest and the 
mechanisms of the clinical outcomes. Alternatively, it is also possible that decreased fitness in 
conditions serve as markers of the processes directly driving the clinical outcomes.  
 
The L1.1.1.1 subgroup carries clade-defining mutations in genes known to modulate resistance 
to not only BDQ but also CFZ and PMD, even though these mutations were acquired before 
adoption of these drugs in the antitubercular regimen.60 These data are consistent with other 
reports of subclade-defining mutations in mmpL5 and fgd1, and our study provides further 
experimental evidence that these mutations alter Mtb clinical strain fitness to BDQ, CFZ, and 
PMD.61–64 This suggests that these strains have evolved mutations—likely in response to host 
pressures on bacterial energy metabolism or small molecule transport— which have caused 
altered sensitivity to these new antibiotics. These genomic changes in genes linked to altered 
BDQ, CFZ, and PMD sensitivity should be considered both to limit the emergence of additional 
drug resistance and in potentially tailoring TB treatment to maximize efficacy, especially 
considering the roll-out of the BPaL regimen – which includes BDQ and PMD.60,65 This 
“precision medicine” approach could prove especially important for Vietnam, which has the 
highest burden of L1.1.1.1 infections.11,51,52 Indeed, the intermediate traits distinguishing the 
Vietnamese L1.1.1.1 strains could reflect the phenotypic effects of bacterial adaption to unique 
host and environmental pressures in this region. Future should work is needed to define the 
mechanisms driving biogeographical restriction of this clade. Further, our TBL analysis may 
indicate that this clade is undergoing a recent expansion event in Vietnam. Because TBLs may 
be shaped by extenuating factors -- such as bacterial mutation rate, the genomic cluster rate, 
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sample size, and population size -- additional analyses that are outside of the scope of this study 
must be employed to assess transmission dynamics more definitively. While the field has largely 
focused on the global pandemic success of L2.2, we provide experimental evidence highlighting 
the clinical significance of the geographically-restricted L1.1.1.1 subgroup. Increased 
transmission within Vietnam should motivate follow-up concerning the treatment outcomes and 
altered drug sensitivities that we identified.  
 
The diversity of intermediate phenotypes displayed by the Mtb clinical strains is intriguing 
because Mtb was historically considered to be a genetically monomorphic organism.66 The field 
recognizes that Mtb clinical outcomes are heterogenous, and our data suggests that bacterial 
heterogeneity should not be overlooked when considering factors contributing to variation in 
patient TB treatment and disease phenotypes.67 Importantly, this heterogeneity, while having a 
phylogenetic relationship, is not easily distinguished at the canonical Mtb lineage level. Given 
the genomic diversity within Mtb lineages, it may be that other sub-lineages can be associated 
with similar negative clinical outcomes but rely on an alternative distinct combination of 
genomic mutations and manifest with different phenotypes.  However, it would be interesting to 
assess whether the slow growth intermediate phenotypes we observed across multiple stress 
conditions is relevant in different phylogenetic contexts.   
 
Together, our work highlights the utility of conducting high-throughput phenotyping of clinical 
strains to define intermediate fitness phenotypes associated with negative clinical outcomes and 
leverage these phenotypes to discover sub-lineages (and genomic mutations) of interest. These 
phenotypic and genomic features may prove useful as both tools for dissecting mechanisms of 
Mtb pathogenesis as well as clinically relevant biomarkers associated with treatment failure. 
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Demographics of tuberculosis 
patient sample (n=158) 

Age  
15-29 years 45 (28·5%) 
30-49 years 80 (50·6%) 
50-69 years 30 (19%) 
70-89 years 3 (1·9%) 
Sex 
Male 114 (72·2%) 
Female 44 (27·8 %) 
Infecting strain lineage 
L1 42 (26·6%) 
L2 107 (67·7%) 
L4 9 (5·7 %) 
Cavitary Disease 
Yes 44 (27·8%) 
No 114 (72·2%) 
Treatment Failure 
Yes 14 (8·9%) 
No 144 (91·1%) 

Table 1. Sample of patients with culture-confirmed tuberculosis disease from Vietnam. 
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Association between demographic features and clinical outcomes within TB patient sample 
Cavitary disease 
percentage 

Cavitary disease Chi-square Treatment failure 
percentage 

Treatment failure Chi-square  

Age, years 
15-29 12/45 (26·7%) Chi-square = 3·05 

P=0·38 

4/45 (8·9%) Chi-square = 2·46 

P=0·48 
30-49 20/80 (25%) 6/80 (7·5%) 
50-69 10/30 (33·3%) 3/30 (10%) 
70-89 2/3 (66·7%) 1/3 (33·3%) 
Sex 
Male 32/114 (28·1%) Chi-square = 0·01 

P=0·92 

11/114 (9·6%) Chi-square = 0·32 

P=0·57 
Female 12/44 (27·3%) 3/44 (6·8%) 

Infecting Strain Lineage 
L1 16/42 (38·1%) Chi-square = 3·01 

P=0·22 

8/42 (19%) Chi-square = 7·7 

P=0·022 
L2 26/107 (24·3%) 6/107 (5·6%) 
L4 2/9 (22·2%) 0/9 (0%) 

\

Table 2. Clinical outcomes associated with culture-confirmed tuberculosis disease from the sample 
Vietnamese patients. 
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Figure 1. Mtb clinical isolates genetically barcoded for pooled competition experiments to examine relative 
metabolic and antibiotic fitness phenotypes. A. Approximately maximum-likelihood tree of the 158 Mtb strains + 
Erdman selected for the study. The scale indicates the number of mutations per site. Rooted at the midpoint. B. 
Diagram of the in vitro competition experiment workflow using genetically barcoded Mtb clinical isolates. Created 
with BioRender. C. Principal component analysis (PCA) of the technical replicates based on D6 strain normalized 
barcode read counts. D. For the barcode replicates (isogenic strains with unique barcodes that serve as biological 
replicates) and the non-replicates (unique strains), histogram shown of Pearson correlation coefficients comparing D6 
strain normalized barcode read counts. 159 unique strains with 1-3 different barcodes each, so 355 strains compared in 
total. E. Dot plot of relative fitness (RF) values for all 159 strains per indicated condition and timepoint. RF values are 
normalized to strain abundance in input pool inoculum, so all D0 values are set to zero. F. Ward’s linkage clustering of 

the stress conditions based on strain D6 RF values. Agglomerative coefficient = 0. 76. Boxes denote 4 different k-
mean clusters.  
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Figure 2. Lineage patterns of Mtb clinical isolates antibiotic and metabolic relative fitness phenotypes. Dot plot of strain 
RF values for the indicated conditions, grouped by lineage. Kruskal-Wallis p-values adjusted by the Dunn’s multiple 

comparisons test indicated.  
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Figure 3. Mtb clinical strain relative fitness phenotypes are heterogeneous but follow genetic and 
sub-lineage associated patterns. A. Heatmap of D6 RF values ordered according to the Fig. 1 phylogeny.  
Triangles indicate clinical phenotypes associated with each strain. Color squares mark strains carrying 
mutations in the indicated genes returned as significant hits from the GWAS. B. Bubble plot of the 
significant hits from the GWAS. Allele frequency refers to the proportion of strains within the clinical 
isolate sample carrying at least one mutation in the indicated gene. C. STRING network analysis of the 
genes carrying mutations unique to L1.1.1.1. Intolerant nonsynonymous mutations predicted by SIFT or 
premature termination mutations (dark yellow node); tolerant and indeterminate nonsynonymous 
mutations (light yellow node); synonymous mutations (black node); intergenic mutations (black node and 
asterisk). For intergenic mutations, the nearest gene downstream of the mutation is indicated. D. Dot plots 
comparing relative fitness values of mutant and wild type strains in the indicated conditions for the 
significant gene hits from the GWAS. Dots indicate mean, error bars indicate standard deviation. P-value 
results of Mann-Whitney test shown after Benjamini, Krieger, and Yekutieli multiple test correction 
indicated.  
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Figure 4. Lineage 1 clade associated poor patient outcomes and transmission in Vietnam. A. Percentage of strains 
associated with the indicated clinical outcomes, grouped by genotype for the indicated genes. Odd ratio, 95% confidence 
interval, and p-value shown. B. Distributions of terminal branch lengths determined by SNPs for different clades of L1. 
P-values from Kruskal-Wallis test and Dunn’s multiple comparison test in comparison to L1.1.1.1 indicated. C. 
Phylogenetic tree of 952 clinical isolates representing the global diversity of L1.1.1.1 and L1.1.1 Mtb clinical strains. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 10, 2023. ; https://doi.org/10.1101/2023.04.09.536166doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.09.536166

