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Summary
Background Many children with pulmonary tuberculosis remain undiagnosed and untreated with related high 
morbidity and mortality. Recent advances in childhood tuberculosis algorithm development have incorporated 
prediction modelling, but studies so far have been small and localised, with limited generalisability. We aimed to 
evaluate the performance of currently used diagnostic algorithms and to use prediction modelling to develop evidence-
based algorithms to assist in tuberculosis treatment decision making for children presenting to primary health-care 
centres. 

Methods For this meta-analysis, we identified individual participant data from a WHO public call for data on the 
management of tuberculosis in children and adolescents and referral from childhood tuberculosis experts. We 
included studies that prospectively recruited consecutive participants younger than 10 years attending health-care 
centres in countries with a high tuberculosis incidence for clinical evaluation of pulmonary tuberculosis. We collated 
individual participant data including clinical, bacteriological, and radiological information and a standardised 
reference classification of pulmonary tuberculosis. Using this dataset, we first retrospectively evaluated the 
performance of several existing treatment-decision algorithms. We then used the data to develop two multivariable 
prediction models that included features used in clinical evaluation of pulmonary tuberculosis—one with chest x-ray 
features and one without—and we investigated each model’s generalisability using internal–external cross-validation. 
The parameter coefficient estimates of the two models were scaled into two scoring systems to classify tuberculosis 
with a prespecified sensitivity target. The two scoring systems were used to develop two pragmatic, treatment-decision 
algorithms for use in primary health-care settings.

Findings Of 4718 children from 13 studies from 12 countries, 1811 (38·4%) were classified as having pulmonary 
tuberculosis: 541 (29·9%) bacteriologically confirmed and 1270 (70·1%) unconfirmed. Existing treatment-decision 
algorithms had highly variable diagnostic performance. The scoring system derived from the prediction model that 
included clinical features and features from chest x-ray had a combined sensitivity of 0·86 [95% CI 0·68–0·94] and 
specificity of 0·37 [0·15–0·66] against a composite reference standard. The scoring system derived from the model that 
included only clinical features had a combined sensitivity of 0·84 [95% CI 0·66–0·93] and specificity of 0·30 [0·13-0·56] 
against a composite reference standard. The scoring system from each model was placed after triage steps, including 
assessment of illness acuity and risk of poor tuberculosis-related outcomes, to develop treatment-decision algorithms. 

Interpretation We adopted an evidence-based approach to develop pragmatic algorithms to guide tuberculosis 
treatment decisions in children, irrespective of the resources locally available. This approach will empower health 
workers in primary health-care settings with high tuberculosis incidence and limited resources to initiate tuberculosis 
treatment in children to improve access to care and reduce tuberculosis-related mortality. These algorithms have been 
included in the operational handbook accompanying the latest WHO guidelines on the management of tuberculosis 
in children and adolescents. Future prospective evaluation of algorithms, including those developed in this work, is 
necessary to investigate clinical performance.
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Introduction 
Tuberculosis is a leading cause of mortality among 
children worldwide,1 accounting for about 2·5% of the 
6 million deaths in children younger than 5 years each 
year.2 Modelling suggests that more than 96% of 
tuberculosis deaths in children younger than 15 years 
occurred in those not receiving tuberculosis treatment.3 
WHO estimates that fewer than 50% of the 1·1 million 
children younger than 15 years who develop tuberculosis 
are diagnosed; the proportion is even lower, about 30%, 
among children younger than 5 years.1 Thus, efforts to 
improve diagnosis, and thereby improve access to 
tuberculosis treatment, are important to reduce 
tuberculosis morbidity and deaths in children.

Confirmation of pulmonary tuberculosis in children is 
challenging because respiratory specimens tend to be 
paucibacillary.4 Furthermore, collecting respiratory 
specimens from young children is invasive and requires 
resources that are generally concentrated in higher-level 
health-care centres. Thus, careful symptom review, 
clinical examination, chest x-ray, and history of 
Mycobacterium tuberculosis exposure can inform treatment 
decisions in clinical care. However, paediatric clinical 
expertise to make a diagnosis is often insufficient at 
primary health-care centres. This limits treatment access 
and leads to either delays in treatment initiation or no 
treatment initiation, both of which are associated with 
poor outcomes, including mortality.5,6 Facilitation of 
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Research in context

Evidence before the study
Treatment-decision algorithms relate information gained in 
the evaluation of children into an assessment of tuberculosis 
disease risk and empower health-care workers to make 
appropriate treatment decisions. Studies in primary health-care 
centres have shown that use of treatment-decision algorithms 
can improve childhood pulmonary tuberculosis case detection 
and treatment initiation in settings with a high incidence of 
tuberculosis. We searched PubMed using the terms (“child*” OR 
“paediatr*” OR “pediatr*”) AND (“tuberculosis” OR “TB”) AND 
(“treatment-decision” OR “algorithm” OR “diagnos*”) to 
identify primary research studies on childhood pulmonary 
tuberculosis treatment-decision algorithm performance 
evaluation or development published in any language before 
June 29, 2022. We additionally consulted several experts in 
childhood pulmonary tuberculosis diagnosis and management, 
and we referred to existing, published reviews of treatment-
decision algorithms. With respect to performance, several 
studies have retrospectively estimated the performance of 
treatment-decision algorithms in a single geographical setting; 
a subset of these studies have also compared the performance 
of multiple algorithms using data from a single geographical 
setting. With respect to development, many existing 
algorithms have been developed without explicit analysis of 
data from children with presumptive pulmonary tuberculosis, 
often developed from expert consensus. Gunasekera and 
colleagues used model-based approaches to analyse diagnostic 
evaluations data (eg, clinical history, physical examination, 
chest radiograph, and results from rapid molecular and culture 
testing for Mycobacterium tuberculosis) collected from children 
with presumptive pulmonary tuberculosis in a single 
geographical setting to inform the development of a diagnostic 
algorithm, whereas Marcy and colleagues and Fourie and 
colleagues analysed data from multiple geographical settings. 
However, these studies were relatively small with limited 
assessment of generalisability.

Added value of this study
Following a WHO call for data, we identified and collated 
individual participant data from 13 prospective diagnostic 
studies from 12 countries including 4718 children with 
presumptive pulmonary tuberculosis from geographically 
diverse settings with a high incidence of tuberculosis. We 
evaluated the performance of existing treatment-decision 
algorithms and developed multivariable logistic regression 
models to quantify the contribution of individual features to 
discriminate tuberculosis from non-tuberculosis. A panel of 
child tuberculosis experts provided input into performance 
targets and advised on how to incorporate scores derived from 
these models into pragmatic treatment-decision algorithms to 
assist in the evaluation of children presenting with presumptive 
pulmonary tuberculosis in primary health-care centres. 

Implications of all the available evidence
Our findings suggest that evidence-based, pragmatic treatment-
decision algorithms can be developed to make sensitive and 
clinically appropriate decisions to treat a child with pulmonary 
tuberculosis. Although the specificity does not reach optimal 
targets for childhood tuberculosis diagnosis, pragmatic 
treatment-decision algorithms provide clinically relevant 
guidance that can empower health workers to start children on 
tuberculosis treatment in the primary health-care setting and 
could contribute to reducing the case-detection gap in childhood 
tuberculosis. External, prospective evaluation of these novel 
algorithms in diverse settings is required, including assessment of 
their accuracy, feasibility, acceptability, impact, and cost-
effectiveness. This work led to a new interim WHO 
recommendation to support the use of treatment-decision 
algorithms in the evaluation of children with presumptive 
tuberculosis in the 2022 updated consolidated guidelines on the 
management of tuberculosis in children. Two algorithms 
developed from this work have been included in the WHO 
operational handbook accompanying these guidelines.
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appropriate diagnostic assessment with rapid treatment 
initiation at primary health-care settings where children 
initially present could contribute to reductions in 
tuberculosis-related morbidity and mortality.

Treatment-decision algorithms aim to standardise 
clinical assessment and decision making. Algorithms 
relate information gained in the evaluation of children 
into an assessment of tuberculosis disease risk and 
empower health-care workers to make appropriate 
treatment decisions. Adoption of an algorithmic 
approach to treatment decision making has been shown 
to improve childhood tuberculosis case detection and 
treatment access at primary health-care settings.7,8 
However, these algorithms were developed using 
consensus expert opinion rather than analysis of data.

Recent approaches for algorithm generation have 
used data from cross-sectional childhood tuberculosis 
diagnostic studies to quantify the contribution of 
clinical characteristics to the risk of tuberculosis 
disease.9–11 Evidence-based approaches are objective and 
offer the potential for validation; however, existing 
studies have been small and not generalisable. We 
assembled individual participant data from children 
investigated for presumptive pulmonary tuberculosis. 
We then aimed to evaluate the performance of currently 
used diagnostic algorithms and to develop evidence-
based algorithms to assist in tuberculosis treatment 
decision making for children younger than 10 years 
presenting to primary health-care settings. This work 
was conducted to inform the 2022 WHO guidelines for 
the management of tuberculosis in children and 
adolescents and the accompanying WHO operational 
handbook.12,13

Methods 
Establishment of individual participant data 
We identified potential sources of individual participant 
data through responses to a WHO public call for data 
on the management of tuberculosis in children and 
adolescents in July, 2020,14 and through referral from 
childhood tuberculosis experts. Studies were eligible 
for inclusion if they prospectively recruited consecutive 
participants younger than 10 years attending health-
care centres in countries with a high tuberculosis 
incidence for clinical evaluation of pulmonary tuber-
culosis and if they provided standardised reference 
classifications of pulmonary tuberculosis. We used an 
age cutoff of younger than 10 years to be consistent 
with the WHO definition of a child and to acknowledge 
that tuberculosis in children aged 10 years or older 
presents more similarly to adult tuberculosis and that 
adult diagnostic approaches are commonly used in this 
age group. We preferred for studies to have used the US 
National Institutes of Health (NIH) clinical case 
definitions of intrathoracic tuberculosis in children for 
diagnostic studies,15 which classifies tuberculosis as 
follows: confirmed tuberculosis as culture-confirmed or 

Xpert MTB/RIF-confirmed M tuberculosis from 
respiratory specimens; unconfirmed tuberculosis as 
having symptoms, chest x-ray findings, immune tests 
of M tuberculosis sensitisation suggestive of tuberculosis, 
and follow-up to assess response to tuberculosis 
treatment (or without resolution of symptoms in the 
absence of tuberculosis treatment); and unlikely 
tuberculosis as not meeting criteria for either confirmed 
or unconfirmed tuberculosis. To ensure greater 
geographical repre sentation, we also accepted data 
from high-quality studies that provided reference 
classifications using a previous NIH clinical case 
definition (in which the categories of probable and 
possible tuberculosis were combined into the 
unconfirmed tuberculosis category) and those that 
classified children using similar, prespecified 
definitions of confirmed, unconfirmed, and unlikely 
tuberculosis. Quality assessment was performed using 
a modified version of the Newcastle-Ottawa scale for 
cohort studies.16

After identification of eligible studies, we requested 
individual participant data including details from the 
clinical history, physical examination, chest x-ray, and 
results from rapid molecular and culture testing for 
M tuberculosis performed on respiratory specimens 
collected at study entry (appendix pp 3–6). All data 
assembly and analysis were carried out using R software 
(version 4.1.1). To account for the uncertainty associated 
with incomplete data, we used multilevel multiple 
imputation by chained equations (MICE) implemented 
in the mice package to generate 100 imputed datasets 
(appendix p 7).17 This study was approved by the 
Stellenbosch University (Cape Town, South Africa) 
Health Research Ethics Committee (reference number 
X21/02/003) and the Yale University (New Haven, CT, 
USA) Institutional Review Board (reference number 
2000028046). All collaborating investigators confirmed 
institutional ethical approval for their original data 
collection.

Evaluation of existing treatment-decision algorithms 
We identified existing treatment-decision algorithms and 
scores (henceforth referred to as algorithms) to guide the 
evaluation of children with presumptive pulmonary 
tuberculosis through consultation with members of the 
WHO Guideline Development Group on the management 
of tuberculosis in children and adolescents. We defined a 
composite reference standard that includes confirmed 
and unconfirmed pulmonary tuberculosis to evaluate the 
performance of these algorithms. We carried out a 
sensitivity analysis of performance using a reference 
standard of confirmed pulmonary tuberculosis only 
(excluding children with unconfirmed tuberculosis). We 
used the reitsma function from the R package mada to 
pool study-level sensitivity and specificity estimates with 
95% CIs using a bivariate random-effects meta-analysis 
(appendix p 8).18,19
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Prediction model development and validation 
We developed a multivariable logistic regression model 
to predict pulmonary tuberculosis using the composite 
reference standard in accordance with the Transparent 
Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis standards.20 We 
prespecified our model to include predictors from 
clinical and chest x-ray features commonly considered in 
the evaluation of presumptive childhood pulmonary 
tuberculosis in primary health-care settings with less 
than 50% missingness in our individual participant 
dataset. We also built a model without chest x-ray data to 
inform predictions in health-care centres without access 
to radiology services.

We adopted an internal–external cross-validation 
framework to estimate model parameters and assess 
generalisability.21 Briefly, this leave-one-study-out 
approach built the prediction model on n – 1 studies 
(n being the total number of studies included in the 
individual participant dataset) and validated using the 
remaining study, and is repeated for each hold-out study. 
Given that model performance was expected to vary 
across each of the hold-out studies, the regression 
coefficients of the n prediction models were subsequently 
meta-analysed to produce a single, summary prediction 
model. This approach was implemented in the metapred 
function of package metamisc, which accomplished 
meta-analysis via linear models.21,22 To account for 
missing data, we generated a prediction model as 
described previously from each of the 100 imputed 
datasets and then used Rubin’s rules to pool the 
regression coefficients and SEs to generate a final, single 
prediction model and compute odds ratios (ORs) with 

95% CIs.23 Using the leave-one-study-out approach, we 
estimated the c statistic (also known as the area under the 
receiver operating characteristic curve) to assess the 
model’s ability to distinguish between children with 
tuberculosis and unlikely tuberculosis, the calibration 
intercept, and the observed-to-expected (O:E) ratio, to 
assess whether there were studies in which the model 
over-predicted or under-predicted tuberculosis.

Algorithm development 
To generate clinically and programmatically imple-
mentable algorithms, we first converted the coefficient 
estimates of the parameters from each prediction model 
into a respective scoring system. We then placed 
the scoring system after several triage steps to guide 
health-care workers on its appropriate use, leading to 
two complete treatment-decision algorithms. We 
describe these steps in additional detail as follows.

We scaled the coefficient estimates for the parameters 
of the final prediction models (developed from all n 
studies) to estimate scores for each parameter such that 
a combined score of more than 10 corresponded to 
classification of tuberculosis at fixed sensitivities of 90%, 
85%, 80%, 75%, and 70% (appendix p 9). To estimate the 
sensitivity and specificity of the scoring system in 
classifying tuberculosis using the composite reference 
standard, study-level sensitivities and specificities were 
pooled using the bivariate normal model of Reitsma  
and colleagues (implemented in the mada package) 
accounting for uncertainty introduced by imputation of 
missing data.18,19 As a sensitivity analysis, we evaluated 
the performance of the score against a reference 
standard of confirmed pulmonary tuberculosis only.

Sample 
size

Country Age <2 years Age <5 years HIV Severely 
acutely 
malnourished

Confirmed 
pulmonary 
tuberculosis

Unconfirmed 
pulmonary 
tuberculosis

Unlikely 
pulmonary 
tuberculosis

Newcastle-
Ottawa 
Scale*

Aurilio et al (2020) 50 Brazil 21 (42·0%) 31 (62·0%) 6 (12·0%) 0 9 (18·0%) 11 (22·0%) 24 (48·0%) 5

Giang et al (2015) 113 Viet Nam 86 (76·1%) 106 (93·8%) 0 8 (7·1%) 20 (17·7%) 77 (68·1%) 16 (14·2%) 5

Hamid et al (2019) 445 Pakistan 41 (9·2%) 175 (39·3%) 0 26 (5·8%) 0 29 (6·5%) 416 (93·5%) 5

Kabir et al (2020) 402 Bangladesh 219 (54·5%) 296 (73·6%) 0 93 (23·1%) 63 (15·7%) 36 (9·0%) 303 (75·4%) 4

López-Varela et al (2015) 789 Mozambique 549 (69·6%) 789 (100·0%) 104 (13·2%) 68 (8·6%) 13 (1·6%) 128 (16·2%) 648 (82·1%) 4

Marcy et al (2019) 338 Burkina Faso, 
Cambodia, 
Cameroon, and 
Viet Nam

78 (23·1%) 142 (42·0%) 338 (100%) 64 (18·9%) 41 (12·1%) 155 (45·9%) 142 (42·0%) 5

Myo et al (2018) 223 Myanmar 72 (32·3%) 150 (67·3%) 27 (12·1%) 46 (20·6%) 27 (12·1%) 84 (37·7%) 112 (50·2%) 5

Orikiriza et al (2018) 338 Uganda 124 (36·7%) 222 (65·7%) 101 (29·9%) 41 (12·1%) 12 (3·6%) 145 (42·9%) 167 (49·4%) 5

Orikiriza et al (2022) 217 Uganda 157 (72·4%) 196 (90·%) 70 (32·%) 108 (50·%) 12 (6·%) 58 (26·7%) 125 (57·6%) 4

Song et al (2021) 300 Kenya 146 (48·7%) 300 (100·0%) 73 (24·3%) 8 (2·7%) 31 (10·3%) 65 (22·3%) 170 (56·7%) 4

Valencia et al (2017) 142 Mozambique 59 (41·5%) 95 (66·9%) 70 (49·3%) 27 (19·0%) 5 (3·5%) 28 (19·7%) 109 (76·8%) 5

Walters et al (2017) 595 South Africa 389 (65·4%) 548 (92·1%) 70 (11·8%) 18 (3·0%) 119 (20·0%) 180 (30·3%) 283 (47·6%) 5

Zar et al (2019) 766 South Africa 362 (47·3%) 603 (78·7%) 137 (17·9%) 32 (4·2%) 189 (24·7%) 274 (35·8%) 303 (39·6%) 5

Total individual participant data 4718 ·· 2303 (48·8%) 3653 (77·4%) 996 (21·1%) 539 (11·4%) 541 (11·4%) 1270 (26·9%) 2818 (59·7%) ··

Additional study-level details and relevant references are available in the appendix (pp 12–24). *Modified version for cohort studies; the highest score is 5, which indicates lower risk of bias. 

Table 1: Study-level descriptions of data included in the individual participant dataset
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We worked with staff from the WHO Global TB 
Programme to identify a group of experts in childhood 
tuberculosis (henceforth referred to as the expert group; 
appendix p 10) to advise on selection of a sensitivity 
performance target to develop the scoring system and 
development of triage steps before the scoring system to 
guide its appropriate use at primary health-care centres. 

Role of the funding source 
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, writing 
of the report, or the decision to submit.

Results 
18 studies were identified as having potentially 
appropriate data, largely sourced from diagnostic 
evaluation studies (appendix p 11). The study 
investigators for two studies were unable to provide data 
in the necessary timeline, and an additional three studies 
did not meet the inclusion criteria. From the 13 included 
studies carried out in 12 countries, 4718 individual 
participant data records from children younger than 

10 years with presumptive pulmonary tuberculosis were 
available (table 1). The data were predominantly collected 
at secondary, tertiary, or referral health-care centres; 
additional study-level details and relevant references are 
available in the appendix (pp 12–24). Although each 
study was required to include children with presumptive 
pulmonary tuberculosis, studies differed slightly with 
respect to inclusion criteria, variable definitions, and 
reference classification of tuberculosis (appendix 
pp 25–39). Of all 4718 children, 541 (11·5%) were classified 
as having confirmed tuberculosis, 1270 (26·9%) as 
having unconfirmed tuberculosis, and 2818 (59·7%) 
unlikely tuberculosis (appendix pp 40–65). Many 
demographic and clinical characteristics were similar 
between children belonging to these groups (appendix 
pp 66–67). All contributing studies had quality 
assessment scores of 4 out of 5 or 5 out of 5 (table 1; 
appendix p 68).

We evaluated the performance of eight existing 
treatment-decision algorithms. One of these algorithms 
was evaluated only on data from children living with HIV, 
and another evaluated only on data from children without 
HIV. Given that some algorithms considered variables 
that were not available in our individual participant 
dataset, we elected to estimate their performance using 
only the data that were available, without considering the 
contribution of those missing variables. References to 
each algorithm and details on which variables were not 
considered in this analysis are available in the appendix 
(pp 69–76). The sensitivities varied from 0·17 (95% CI 
0·07–0·38) to 0·93 (0·78–0·98), with specificities varying 
from 0·88 (0·69–0·96) to 0·16 (0·05–0·43) when 
evaluated against the composite reference standard 
(figure 1; appendix pp 77–84). A sensitivity analysis 
evaluating performance to discriminate confirmed 
tuberculosis from unlikely tuberculosis showed 
marginally higher sensitivities and similar specificities to 
the performance in the entire dataset (appendix p 85).

ORs and 95% CIs of the predictors included in the 
model are shown in table 2. For the prediction model 
including chest x-ray features, the pooled c statistic 
was 0·71 (95% CI 0·66 to 0·76), the calibration intercept 
was –0·18 (–0·76 to 0·41), and the O:E ratio was 0·90 
(0·64 to 1·26). Additional internal–external cross-
validation c statistic, calibration intercept, and O:E ratio 
estimates are included in the appendix (pp 86–87). For 
the prediction model without chest x-ray features, the 
pooled c statistic was 0·65 (95% CI 0·59 to 0·71), 
the calibration intercept was –0·14 (–0·74 to 0·46), and 
the O:E ratio was 0·92 (0·60 to 1·43), with additional 
estimates included in the appendix (pp 88–90).

The appendix shows the scores derived from the model 
prediction coefficients that correspond to classification of 
all tuberculosis with respective sensitivities of 90%, 85%, 
80%, 75%, and 70% (pp 91–92), and the study-level and 
summary performance of these scores in classifying 
tuberculosis (pp 93–97).
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Sensitivity
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Uganda NTLP algorithm
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Figure 1: Performance of existing treatment-decision algorithms at classifying tuberculosis 
Retrospective estimates of the pooled sensitivity (A) and specificity (B) of eight algorithms to guide decisions to 
treat children with presumptive pulmonary tuberculosis, had they been used to evaluate the children for whom we 
have individual participant data records. The reference classification of pulmonary tuberculosis included 
bacteriologically confirmed pulmonary tuberculosis and unconfirmed pulmonary tuberculosis. Modifications were 
made to the algorithms to maximise the use of the available individual participant dataset. NTLP=National TB and 
Leprosy Program. *Performance estimates from Marcy and colleagues. The algorithm was derived from only 
HIV-positive children in the individual participant dataset that excludes data from the cohort comprising 
HIV-positive children from Burkina Faso, Cambodia, Cameroon, and Viet Nam (from which the algorithm was 
developed). †Performance estimates by Gunasekera and colleagues. The algorithm was derived from only 
HIV-negative children in the individual participant dataset that excludes data from the South Africa population 
(from which the algorithm was developed).
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To balance the consequences of untreated tuberculosis 
versus the consequences of overtreatment, the expert 
group recommended a sensitivity threshold of 85% in 
classifying tuberculosis using the composite reference 
standard, resulting in the development of a score with a 
sensitivity of 0·86 (95% CI 0·68–0·94) and a specificity of 
0·37 (0·15–0·66; figure 2). An analysis of the performance 
in classifying confirmed tuberculosis versus unlikely 
tuberculosis showed a sensitivity of 0·88 (95% CI 
0·71–0·95) and specificity of 0·37 (0·15–0·67; appendix 
p 98). Under a sensitivity threshold of 85%, the model that 
included only features from the baseline clinical evaluation 
(without chest x-ray findings) had a sensitivity of 0·84 
(95% CI 0·66–0·93) and specificity of 0·30 (0·13–0·56) in 
classifying tuberculosis (appendix pp 99–100).

To adapt the scores into treatment-decision algorithms to 
be used at primary health-care centres, the expert group 
recommended the following triage steps before 
tuberculosis classification using the score: identifying 
children with clinical symptoms and signs requiring 
urgent referral to higher levels of health care, and 
stratifying children by risk of mortality and progression of 
tuberculosis. Children at higher risk were defined by the 
expert group as those who belonged to any of the following 
categories: younger than 2 years, severely malnourished, 
or living with HIV. These children would be evaluated 
using the score at the time of the initial evaluation. 
Children not meeting this definition would be treated for 
the most likely non-tuberculosis condition and complete 
re-evaluation in 1–2 weeks; those with persistent 
or worsening symptoms at follow-up would be 
evaluated using the score. The expert group additionally 
recommended to pursue bacteriological testing, whenever 
available, on respiratory or stool specimens with rapid 
molecular diagnostics for all children and urine lateral 
flow assays for HIV-positive children, to align with existing 
WHO recommendations.24

The expert group recommendations resulted in the 
development of a treatment-decision algorithm (figure 3), 
in which children younger than 10 years with presumptive 
pulmonary tuberculosis are triaged by risk of 
tuberculosis-related morbidity and mortality before 
being evaluated for the presence of clinical and chest 
x-ray features to assign a score corresponding to 
tuberculosis risk. A total score of more than 10 results in 
classification of tuberculosis with a sensitivity of 85%. 
A known exposure to tuberculosis alone has a score of 
more than 10, which provides sufficient evidence to 
justify sensitive treatment decision making on its own; 
thus, this feature was placed above the other scored 
elements in the algorithm. The same parameters were 
used to construct the treatment-decision algorithm from 
the model without chest x-ray features (appendix p 101).

Discussion 
We assembled a large individual participant dataset from 
nearly 5000 children from geographically diverse, high 

tuberculosis incidence settings to evaluate existing 
treatment-decision algorithms and develop new 
evidence-based treatment-decision algorithms to guide 
evaluation of children with presumptive pulmonary 
tuberculosis. As far as we are aware, this work describes 
the largest analysis to date of the best currently available 
individual participant data to provide practical guidance 
to health-care workers in primary health-care settings 
to identify which clinical features, with or without 
chest x-ray assessment, indicate whether initiation of 
tuberculosis treatment is warranted.

Previous work in childhood tuberculosis algorithm 
development has been from smaller studies with limited 
investigation into generalisability. This analysis leverages 
the clustered nature of the individual participant dataset 
using an internal–external cross-validation framework to 
allow for more generalisable model parameter estimation 
and investigation into model validity. Furthermore, the 
algorithms were developed closely with members of the 
WHO and experts in childhood tuberculosis to prioritise 
sensitive treatment decision making to address the global 
burden of child mortality associated with untreated 
childhood tuberculosis. The newly developed algorithms 
were incorporated into the WHO operational handbook 
to support implementation of the new consolidated 
guidelines.12,13

Of the clinical features, only reported exposure to 
tuberculosis was independently sufficient to meet the 
threshold for treatment initiation. This was true even in 
the model-based score without chest x-ray features, 
suggesting that none of the common clinical features 

Coefficient (95% CI) Odds ratio (95% CI) p value*

Intercept –1·92 (–2·58 to –1·25) ·· ··

Cough duration ≥2 weeks† 0·17 (–0·09 to 0·43) 1·19 (0·91 to 1·54) 0·86

Fever duration ≥2 weeks‡ 0·45 (0·16 to 0·74) 1·57 (1·18 to 2·09) 0·25

Lethargy 0·25 (0·02 to 0·48) 1·28 (1·02 to 1·62) 0·66

Weight loss 0·22 (–0·03 to 0·48) 1·25 (0·97 to 1·62) 0·75

History of documented tuberculosis exposure 1·43 (0·87 to 2·00) 4·20 (2·39 to 7·38) <0·0001

Haemoptysis 0·34 (–0·37 to 1·05) 1·40 (0·69 to 2·86) 0·78

Night sweats 0·20 (0·02 to 0·38) 1·22 (1·02 to 1·47) 0·71

Peripheral lymphadenopathy 0·35 (0·13 to 0·57) 1·42 (1·14 to 1·77) 0·35

Temperature ≥38°C 0·00 (–0·25 to 0·26) 1·00 (0·78 to 1·30) >0·999

Tachycardia 0·15 (–0·13 to 0·42) 1·16 (0·88 to 1·53) 0·90

Tachypnoea –0·05 (–0·27 to 0·16) 0·95 (0·77 to 1·18) 0·98

Cavities on chest x-ray 0·47 (–0·11 to 1·05) 1·60 (0·90 to 2·85) 0·53

Intrathoracic lymphadenopathy on chest x-ray 1·46 (1·00 to 1·92) 4·32 (2·73 to 6·85) <0·0001

Opacities on chest x-ray 0·43 (0·02 to 0·84) 1·54 (1·02 to 2·32) 0·45

Miliary infiltrate on chest x-ray 1·27 (0·57 to 1·97) 3·56 (1·76 to 7·19) 0·0002

Pleural effusion on chest x-ray 0·64 (0·20 to 1·09) 1·90 (1·22 to 2·96) 0·13

The estimate provided for each predictor is computed against a reference that reflects the absence of that feature. 
*Calculated using Rubin’s rules for multiple imputed data. †Absence is no cough or cough lasting less than 2 weeks. 
‡Absence is no fever or fever lasting less than 2 weeks. 

Table 2: Estimates from logistic regression prediction model to classify pulmonary tuberculosis using 
variables from initial evaluation
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could independently inform highly sensitive and specific 
treatment decisions. While results from tuberculin skin 
testing were used by studies to inform classification of 
tuberculosis and to improve imputation of missing data, 
we did not include these in the algorithms given 
operational limitations in using tuberculin skin testing at 
scale in high-burden settings. Of the chest x-ray features 
included in the algorithm, the presence of intrathoracic 
lymphadenopathy and a miliary pattern, respectively, 
were independently sufficient to start treatment. It is 
worth noting that inclusion of chest x-ray features only 
increased the specificity of the score slightly as compared 
with the score developed from the model with clinical 
features only. Chest x-ray has additional utility in guiding 
childhood pulmonary tuberculosis treatment duration 
for severe versus non-severe disease,25 in monitoring 

tuberculosis treatment response (including associated 
complications and sequelae), and in the diagnosis of 
other non-tuberculosis intrathoracic pathology.

The decision to prioritise sensitivity in our algorithm 
development is crucial to initiate appropriate treatment 
in more children with tuberculosis; however, many 
children might be incorrectly treated for tuberculosis 
given the resulting specificity. No test or algorithm meets 
the WHO target sensitivity and specificity for a 
confirmatory diagnostic test for childhood pulmonary 
tuberculosis.26 Thus, the expert group advised to develop 
an algorithm with a minimum sensitivity target of 
85% as an acceptable balance between sensitivity and the 
resulting specificity. Given the estimated specificity of 
37% for the scored part of the algorithm, it is likely that 
children without tuberculosis will be started on 
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Figure 2: Forest plot depicting performance of scaled scores from prediction model to classify tuberculosis with 85% sensitivity
Study-level and pooled estimates of the (A) sensitivity and (B) specificity of classifying tuberculosis (composite reference standard: bacteriologically confirmed 
pulmonary tuberculosis and unconfirmed pulmonary tuberculosis) of the scores derived from the prediction model developed from the individual participant dataset 
to classify tuberculosis with 85% sensitivity. 
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4–6 months of treatment for tuberculosis and exposed to 
risk of adverse drug events. However, given the severe 
consequences of a missed tuberculosis diagnosis and the 
low rates of severe adverse drug events in this age group,27 
this trade-off of improved sensitivity for poorer specificity 
is reasonable. Additionally, it is noteworthy that current 
WHO recommendations for preventive treatment 
include at a minimum 3–4 months of treatment. It is also 
true that overtreatment for tuberculosis might result in 
delayed diagnosis of non-tuberculosis disease. Future 
study of the relative cost of false positive versus 
false negative classification at varying prevalence of 
tuberculosis could inform sensitivity threshold selection 
in subsequent algorithm development.

We note that the model-based scoring component of 
the algorithm demonstrates considerable study-level 
heterogeneity in sensitivity and specificity. Although this 
individual participant dataset is the largest of its size 
compiled to date, there were not enough studies to 
quantitatively describe the features that drive the 
observed heterogeneity. Given that we used data made 
available to WHO following a public call rather than 
conducting a systematic review, it is possible that some 
diagnostic studies might have been excluded. The 
inclusion of more data from existing, ongoing, and 
future studies could allow meta-regression to describe 
study-level sources of heterogeneity. Heterogeneity 
might have been driven in part by varied tuberculosis 
prevalence in the cohorts included as well as hetero-
geneities in disease presentation.

Several existing algorithms evaluated have similar 
performance to ours. Although we are unable to formally 
compare our newly developed algorithm with existing 
algorithms, the similar performance suggests that there 
might be several algorithms that a public health 
programme could consider to suit specific settings, 
available resources, and other implementation consid-
erations. Future analysis of available data, including 
those obtained through a systematic review, might 
provide the opportunity to revise and calibrate the model 
and further interrogate possible sources of heterogeneity. 
This could lead to investigation and development of 
algorithms that might perform better among different 
subgroups of children, including those at higher risk for 
tuberculosis-associated mortality.

We considered it important to evaluate existing 
treatment-decision algorithms and develop new algorithms 
using a composite standard rather than solely a 
microbiological standard, given the high proportion of 
children treated for tuberculosis without bacteriological 
confirmation, even in the best resourced settings, which 
reflects the paucibacillary nature of disease in most young 
children. However, this reference standard remains 
imperfect, and misclassification might occur.28 The 
underlying composition of the unconfirmed tuberculosis 
group might represent a heterogeneous group in which 
some children have tuberculosis, and some have other 

causes for their observed symptoms and signs. 
Additionally, it is possible that inclusion of unconfirmed 
pulmonary tuberculosis biased the estimation of the 

Figure 3: Treatment-decision algorithm including chest x-ray features derived from the prediction model
Tuberculosis treatment-decision algorithm for use among children younger than 10 years with symptoms 
suggestive of pulmonary tuberculosis, reproduced from the operational handbook accompanying the WHO 
consolidated guidelines on the management of tuberculosis in children and adolescents.12,13 Selection steps before 
entering the scoring system reflect recommendations from the WHO expert panel to enrich the probability of 
tuberculosis among the population of children proceeding through the algorithm to the model such that the 
probability would more closely reflect the preselected population producing the data from which the prediction 
model was built, while balancing the consequences of untreated tuberculosis in children at high risk. Scores 
associated with features from clinical history and physical exam and chest x-ray translate to risk of tuberculosis and 
are scaled from the prediction model developed from the individual participant dataset. Guidance on the practical 
use of this algorithm is outlined in the WHO operational handbook.13 LF-LAM=lateral flow urine 
lipoarabinomannan assay. WRD=WHO-recommended rapid diagnostic test.
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prediction model parameters, especially those used to 
classify the unconfirmed group. Although this is a 
limitation of our study, the similar performance estimates 
of the score developed in the primary analysis using both 
the composite and confirmed tuberculosis reference 
standards suggest that this might not be a major issue.

Given that our algorithms are intended to guide 
decisions to treat children in primary health-care centres, 
it is a limitation that our individual participant dataset 
was derived from primarily tertiary and referral health 
centres. We are not aware of studies that provide this 
quality of diagnostic evaluation data from presumptive 
childhood tuberculosis in primary health-care centres. 
However, in several studies, children presenting at 
primary health-care settings were directly referred for 
study evaluation, providing some degree of reassurance 
as to the generalisability of results. The pre-test probability 
of tuberculosis is likely to be substantially lower among 
children attending primary health-care centres and the 
clinical presentation might be different as compared with 
tertiary and referral centres from which the data were 
obtained due to differences in tuberculosis prevalence. 
These are important given that many children with 
tuberculosis first present to primary health-care centres.29 
We believe that the risk stratification and delayed entry of 
lower risk children with presumptive tuberculosis (who 
should be able to tolerate the delay) is a practical attempt 
to safely raise the pre-test probability when implementing 
the algorithm in primary health-care centres.

It should be noted that although these performance 
estimates relate to the scored component of the 
algorithm, the overall sensitivity and specificity of the 
whole algorithm, which includes the triage steps, remain 
unknown and should be evaluated prospectively. As 
low-risk children are made to wait before being evaluated 
with the scored part of the algorithm, symptoms in some 
with diagnoses other than tuberculosis will resolve, 
probably improving specificity. Prospective evaluation of 
the entire algorithms in primary health-care settings will 
be crucial to determining their utility in improving case 
finding and reducing the mortality associated with 
untreated tuberculosis. Prospective studies of algorithm 
acceptability and feasibility are also indicated.

There are inherent limitations to developing a 
prediction model using data from multiple cohorts for a 
disease with an imperfect diagnostic gold standard. 
Study-level inclusion criteria varied, which affects the 
baseline tuberculosis prevalence and applicability of the 
score prediction estimates. Additionally, prediction 
variable definitions varied among the included studies—
eg, history of weight loss was variably defined as caregiver-
reported history of weight loss, objective weight loss, or 
deviation from previous growth trajectory. This 
heterogeneity is also true for the study-level reference 
classifications, especially for unconfirmed tuberculosis. 
Some studies used a previous version of the NIH 
reference classification, which included probable and 

possible tuberculosis categories that we reclassified as 
unconfirmed tuberculosis, despite the limitations of 
using this approach.30 Furthermore, studies contributing 
chest x-ray data included interpretations of managing 
health-care providers or expert radiologists, depending 
on the study setting. These might contribute to 
heterogeneities in estimating the association between the 
predictors and the outcome of tuberculosis. Notably, a 
high degree of missingness in the individual part icipant 
dataset limited the variables available to evaluate existing 
algorithms and include in algorithm development. 
Protocol standardisation for childhood tuberculosis 
diagnostic evaluation will reduce heterogeneity in variable 
definition and assist future attempts to consolidate data 
for algorithm development and evaluation. Finally, we 
note that using a prespecified prediction model, as we 
did, might lead to overfitting.31 Despite a reasonable 
summary O:E ratio for our model, the heterogeneity in 
study-level O:E ratio demonstrated in our internal–
external cross-validation suggests that overfitting might 
be an issue. As more data become available, future 
investigation into the causes driving heterogeneity as well 
as other methods of prediction model feature selection 
might inform more nuanced use of this algorithm within 
specific contexts and populations.

Pragmatic treatment-decision algorithms can lead to 
better detection of tuberculosis in children, with improved 
access to early treatment and reduced tuberculosis 
morbidity and mortality. Although we developed these 
algorithms using a thorough modelling analysis of a 
large, high-quality individual participant dataset, the 
disappointing specificity of the scoring component 
suggests that improved diagnostic tools, such as 
computer-assisted interpretation of chest x-ray and 
biomarkers specific to tuberculosis, will be necessary to 
meet sensitivity and specificity targets. As these diagnostic 
tools become available, their data might be incorporated 
into treatment-decision algorithms to improve the 
specificity of the algorithms while maintaining high 
sensitivity.

Treatment-decision algorithms are now conditionally 
recommended by WHO in the evaluation of children 
with presumptive tuberculosis, which could lead to 
improved diagnostic capacity and treatment initiation at 
primary health-care centres where childhood tuberculosis 
expertise might be lacking. This work represents a 
paradigm shift in pragmatic and evidence-based 
approaches using advanced analytical methods to develop 
algorithms that draw on the best globally available data. 
This approach can be further improved and interrogated 
as additional data and diagnostic tools become available.
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